Hydraulic Systems Tubing

Hydraulic Systems Tubing Lifelines to power and motion contro l By Terry Karl and Mark Morrow April 2000 When a fully loaded B747-400 finally lands after 10 or more hours in flight, some 600,000 lbs. of aircraft and passengers...

Hydraulic Systems Tubing

Lifelines to power and motion control

By Terry Karl and Mark Morrow

April 2000

When a fully loaded B747-400 finally lands after 10 or more hours in flight, some 600,000 lbs. of aircraft and passengers travelling at approximately 170 miles per hour must come to a stop — safely. While we all know that hydraulic pumps, valves, brakes, and thrust reversers must work properly to accomplish this, we often don't think about the ubiquitous metal tubes that carry the hydraulic power through and to these subsystems. These "lifelines" of the hydraulic system must also be in optimum operating condition to meet these demands.

Most of today's attention in hydraulic system design and maintenance is paid to the critical, large subsystems and components, such as primary and secondary flight control actuators, engine-driven pumps, auxiliary pumps, electric motor pumps, and power transfer units. The emerging technologies surrounding the "all electric aircraft" and EHAs (electrohydrostatic actuators) command much more attention than simple hydraulic tubing. These technologies and accessories drive both the complexity and costs associated with aircraft hydraulic systems. As many mechanics are aware, however, even with all these advancements and the increased sophistication of hydraulic systems today, fluid leakage remains as one of the most aggravating causes for unscheduled maintenance actions. One of the leading causes of fluid leakage involves hard tubing and tube fittings. This article focuses on hydraulic tubing and various methods of maintenance and repair for these tubes.

Hydraulic power lifelines
Hydraulic tubing and flexible hose styles are, indeed, the lifelines of hydraulic power and motion control. These distribution systems carry high-pressure (typically 3,000 psi) hydraulic fluid power to all the various points in the aircraft where work needs to be done. Although not nearly as glamorous as the power and motion control accessories, nevertheless, problems associated with tubing and fittings cause some 30 to 60 percent of aircraft delays and cancellations. A typical commercial transport can contain up to several hundred yards of tubing and thousands of fittings and fitting connections. Hydraulic tube sizes can range from as small as a quarter inch up to one and a half inches. Material types used range from aluminum (typically 6061T6) to corrosion-resistant steel (CRES alloys such as 300 series and more robust materials such as 21-6-9) to exotic titanium material (such as 3Al-2.5V). Tubing wall thickness for a given tube size can vary also, since the effort to save weight in aircraft design is optimized. Therefore, the mechanic's dilemma in hydraulic tube repair can be magnified quite quickly.

Tube failures
Many factors can contribute to tube failures. The most commonly cited factors are chafing (either against structure or at clamping points), installation stress (created by runs of tubing going from fixed point to fixed point), and corrosion (due to environmental conditions). While thorough precautions are taken in the selection of materials, design, and installation by the airframe manufacturers, it is still possible that tube leaks can occur. To minimize these possibilities, maintenance of tubes and fittings should always be accomplished in accord with the airframe manufacturer's recommended practices as detailed in the airframe maintenance manual.

Tubing maintenance basics
Hydraulic system tubing maintenance can be proactive in the sense that routine inspections for evidence of weeping and leakage can be done visually or by wiping exposed surfaces with a clean, white rag to determine if fluid is present. Tube clamping points should be examined visually for evidence of looseness and possible chafing against the tubes they are clamping. Loose or damaged clamps or clamps whose protective elastomer padding is worn or damaged should be replaced. Tubes should be examined visually for evidence of scratches, nicks, dents, or any other malformations or defects that could cause failure points. Tubing should also be free from excessive accumulations of other fluids such as cleaning fluids and other foreign substances that might eventually lead to corrosive damage to the tube. Finally, tubing should not be in direct contact with airframe structure, other tubes and/or hose or other accessories that might lead to chafing.

This content continues onto the next page...

We Recommend

  • Article

    Electrical Harness Maintenance

    Electrical Harness Maintenance By Dan Warchol September 2000 Author's note: Unison Industries and specifically the author of this article would like to acknowledge the contributions of...

  • Article
    Aerospace Hose Assemblies

    Aerospace Hose Assemblies

  • Article

    TPE-331 Prop Governing Systems

    TPE-331 Prop Governing Systems Theory and Troubleshooting Tips by Dan Ankarlo April 2000 Fundamental differences between Garrett (AlliedSignal) and Pratt & Whitney...

  • Article

    Hydraulic GSE - Maintenance and Troubleshooting

    October 2003 When properly maintained and operated, hydraulic GSE equipment should provide many years of trouble free service. This article is a supplement to the OEM maintenance manual...