MANAGING AIRPORTSTODAY

MANAGING AIRPORTSTODAY The Immediate Challenge By Michael Patrick, Director of Architectural Design, Leo A Daly, Inc. April 2002 Recommendations for eliminating bottlenecks at screening checkpoints Following is a proposal by a...


MANAGING AIRPORTSTODAY

The Immediate Challenge

By Michael Patrick, Director of Architectural Design, Leo A Daly, Inc.

April 2002

Recommendations for eliminating bottlenecks at screening checkpoints
Following is a proposal by a consultant who, with others, has been involved in analyzing security screening checkpoints at U.S. airports. The intent is to offer practical guidance on what airports can do in the short term to alleviate choke points that have arisen as security has tightened. This is an abbreviated version of a presentation made at the recent Airport Planning, Design, & Construction Symposium, co-hosted by the American Association of Airport Executives and the Airport Consultants Council in Denver.

In 2000, the draft of the recently published FAA Recommended Secur-ity Guidelines for Airport Planning, Design and Construction was essentially complete. When the Architectural Design Subcommittee completed the section on Security Screening Check-points for that document, we concluded that common sense layout rearrangements could improve checkpoint performance as much as new equipment could. Aspects of the basic idea include:

o creating a well-defined area in front of checkpoints to prepare passengers to move through the process smoothly;
o tables or podiums to encourage divesting (taking metal objects out of pockets) in advance of the metal detectors to limit congestion;
o a visual barrier to prevent x-ray screeners from being distracted by approaching passengers to increase focus and effectiveness;
o a distinction in materials (floor, ceiling, wall), lighting, etc. to deter accidental bypass of the check point through the exit lane (often called a "breach");
o a variety of ideas for arrangement of the equipment within the checkpoint itself.

It became clear in working on the checkpoints section that good design - in this case, careful organization, layout, and design of the physical components and spaces of a checkpoint - was an important element of success. Just as any design is based on a program, checkpoint layout is, or should be, carefully built around the procedures that will take place.

Post-9/11 Change 'A'

After failing the first (primary row) metal detector, the passenger must go directly to hand-screening.

This post-9/11 change in procedure eliminates the recycling process, with sequential divesting (taking more and more out of a passenger's pockets each time). Thus, moving through the metal detector is much quicker. However, those who fail the metal detector are conducted to an area for far more extensive and time-consuming hand searching than before. Sometimes their bags are left on the end of the x-ray belt, jamming up the works as noted above, and causing the initial queue to grow as people wait for the belt to start to move again. (At the moment, the x-ray machines are even further burdened by the practice of examining selected individual's shoes.)

In general, then, the time for metal detection processing has decreased greatly, while the x-ray belt is more congested than before.

Meanwhile, the handoff of the person who has failed the metal detector from the first screener to the next screener responsible for hand searching continues, as it was pre-9/11, to be a weak link in the processing speed of the checkpoint as a whole. At present, the first screener must blockade the metal detector (stopping flow and making the queue grow) until the next responsible screener arrives to take over, which can be a significant time. A better procedure needs to be addressed for this weak link.

One possible procedure is to allow for a retention space, possibly a glass "corral" between two x-rays, as a waiting area for passengers who alarmed the metal detector and are to be hand-screened. This would free the primary screener to open the metal detector flow again. In one case an increase in flow of 40 percent was measured using this procedure. This and other options should be considered and tested.

This content continues onto the next page...

We Recommend