The Big Picture

Situational awareness is a frequent buzzword in the world of aviation. From a maintenance perspective it deals with self-preservation. Knowing what is going on around us is a great way to avoid incidents or worse yet, accidents involving bodily...


Situational awareness is a frequent buzzword in the world of aviation. From a maintenance perspective it deals with self-preservation. Knowing what is going on around us is a great way to avoid incidents or worse yet, accidents involving bodily injury.

In the flight environment there is an equally broad need for awareness. Not only do flight crews need to know what goes on with the aircraft but they require information about weather, potential traffic conflicts, and surrounding terrain.

Real-world environment

Advancements in flight deck displays and computer graphics have enabled a complete virtual real-world environment where pilots have access to information that influences the flight.

Perusing the cockpit of almost any recently certified aircraft is an eye-opening experience. In many cases, with power off, the instrument panel appears sparsely populated with perhaps four or five displays along with a few strategically located indicators and switch modules. Once energized it soon becomes apparent that significantly more information can be observed than in years past. In addition, computer animation makes it possible to blend data enabling one image to present many facets.

Even the traditional fault warning panel becomes an integral part of the display system. Once an anomaly is recognized, system software makes a determination if the malfunction should be presented to the flight crew or stored until the aircraft is either on the ground or in a less critical flight envelope. Once a crew advisory is generated, the pilot will often have the ability to select a pertinent display menu allowing synoptic viewing of the system highlighting where the perceived malfunction has occurred.

Engine indications

In addition to bringing faults to the attention of the crew many systems have the ability to retain this information in some type of central maintenance system (CMS) giving maintenance technicians the ability to review the aircraft’s perspective of a reported malfunction. Even engine indications have become part of the big picture. Digital engine controllers are a natural source of data for electronic displays and may provide additional diagnostic information that can be easily retrieved by technicians.

For years fundamental navigation instruments were installed in a panel using a standard form often referred to as the “Basic T.” Airspeed was in the upper left next to the attitude indicator. The altimeter was on the right and heading belonged just below the attitude. This standard is still in use today with a few variations and enhancements.

System operating software often has the ability to bias indications based on the aircraft configuration. In some cases airspeed limitations are reduced predicated on aircraft weight or fuel load and operating altitudes may be limited in the event certain automatic flight control systems are not fully operational. The visual cues delivered automatically to the flight crew provide that extra element to ensure safe operation. New display formats are conducive to providing a moving map giving pilots a clear indication of up-to-date aircraft position complete with other air traffic.

Digital weather information

It wasn’t all that long ago that the pilot’s briefing was the main source for obtaining a trip weather report. Onboard weather radar is still the best way to provide storm avoidance but newer digital weather information can now be viewed real time in flight enabling the crew to anticipate altered flight paths well in advance of storm cell visual contact and this information can be applied to the moving map.

The synthetic vision system (SVS) is a computer-mediated reality system for aircraft using a representational three-dimensional format to provide pilots with a clear visual understanding of the airborne environment.

This technology was developed by NASA and the U.S. Air Force in the late 1970s and 1980s in support of advanced flightdeck concepts.

Additional navigation systems

This content continues onto the next page...

We Recommend